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OutlineOutline

• Introduction
• Basic Feedback Loop Theory
• Circuits
• “Spectacular” Failures
• Appendices: 

– design for test
– writing a PLL Spec
– references

• Sorry: no DLL’s in this tutorial



Copyright, Dennis Fischette, 
2004

3

Intended AudienceIntended Audience

• If you…
• Are a novice PLL designer
• Specify PLL requirements
• Integrate PLL’s on-chip
• Test/debug PLL’s
• Review PLL designs
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IntroductionIntroduction
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What is a PLL?What is a PLL?

• A PLL is a negative feedback system where an 
oscillator-generated signal is phase and frequency 
locked to a reference signal.

• Analogous to a car’s “cruise control”
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How are PLL’s Used?How are PLL’s Used?

• Frequency Synthesis (e.g. generating a 1 GHz 
clock from a 100 MHz reference)

• Skew Cancellation (e.g. phase-aligning an internal 
clock to the IO clock) (May use a DLL instead)

• Extracting a clock from a random data stream 
(e.g. serial-link receiver)

• Frequency Synthesis is the focus of this tutorial.
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ChargeCharge--Pump PLL Block DiagramPump PLL Block Diagram
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ChargeCharge--Pump PLL Building BlocksPump PLL Building Blocks

• Phase-Frequency Detector (PFD)
• Charge-Pump (CP)
• Low-Pass Filter (LPF)
• Voltage-Controlled Oscillator (VCO)
• VCO Level-Shifter (LS)
• Feedback Divider (FBDIV)
• Power Supply regulator/filter (VREG)?
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Components in a NutshellComponents in a Nutshell

• PFD: outputs digital pulse whose width is 
proportional to phase error

• CP: converts digital error pulse to analog error 
current

• LPF: integrates (and low-pass filters) error current 
to generate VCO control voltage

• VCO: low-swing oscillator with frequency 
proportional to control voltage

• LS: amplifies VCO levels to full-swing
• DIV: divides VCO clock to generate FBCLK clock
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PLL Feedback Loop TheoryPLL Feedback Loop Theory
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Is My PLL Stable?Is My PLL Stable?

• PLL is 2nd-order system similar to mass-spring-
dashpot or RLC circuit.

• PLL may be stable or unstable depending on 
phase margin (or damping factor).

• Phase margin is determined from linear model of 
PLL in frequency-domain. 

• Find phase margin/damping using MATLAB, loop 
equations, or simulations.

• Stability affects phase error, settling, jitter.
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What Does PLL Bandwidth Mean?What Does PLL Bandwidth Mean?

• PLL acts as a low-pass filter with respect to the 
reference. 

• Low-frequency reference modulation (e.g.spread-
spectrum clocking) is passed to the VCO clock.

• High-frequency reference jitter is rejected.
• “Bandwidth” is the frequency at which the PLL 

begins to lose lock with the reference (-3dB).
• PLL acts as a high-pass filter wrt VCO noise.
• Bandwidth affects phase error, settling, jitter.



Copyright, Dennis Fischette, 
2004

13

ClosedClosed--loop PLL Transfer Functionloop PLL Transfer Function

• Analyze PLL feedback in frequency-domain
• Assumes continuous-time behavior
• H(s) = fb/ ref = G(s)/(1+G(s)) closed-loop 

gain
• G(s) = (Kvco/s)IcpF(s)/M   open-loop gain

where 
Kvco = VCO gain in Hz/V
Icp = charge pump current in Amps
F(s) = loop filter transfer function
M = feedback divisor
C1 = large loop-filter capacitor
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ClosedClosed--loop PLL Transfer Functionloop PLL Transfer Function

• General Form (ignoring C2):
H(s) = n

2 (1+ s/z) / (s2+2sn + n
2)

where
n = natural freq = sqrt(KvcoIcp/MC1)
z = stabilizing zero = 1 /RC1

 = damping = 
(RC1/2)*sqrt(KvcoIcp/MC1)

• If < 1, complex poles at -n ± jn*sqrt(1- 2)
– Real  exponential delay 
– Imag  oscillation    
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What Determines Stability and What Determines Stability and 
Bandwidth?Bandwidth?

• Damping Factor (measure of stability)
• Natural Frequency (measure of bandwidth)
• Damping and natural frequency can be set 

independently by LPF resistor
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PLL Loop EquationsPLL Loop Equations

• Undamped Natural Frequency:
n = sqrt(Kvco*Icp/( M*C1))  in rad/sec
where 

Kvco = VCO gain in Hz/V
Icp = charge pump current in Amps
M = feedback divisor
C1 = large LPF capacitor

• For stability: n/2 < ~1/20 reference frequency 
• Typical value: 1 MHz < n/2 < 10MHz.
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PLL Loop EquationsPLL Loop Equations

• Damping Factor: usually 0.45 <  < ~1.5
 = Rlpf * C1 * n /2

• Useful Relation:
Phase margin ~ 100 *  (for  < 0.65)

• Loop Decay Time Constant = 1/( * n) 
- used to estimate settling time
- 98% settling in 4 time constants 
Decay ~ 1- exp(-t* * n)
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PLL LoopPLL Loop EqnsEqns: Limits on: Limits on RRlpflpf

• PFD must sample faster than loop can respond to 
act like continuous-time system

• Discrete Time Stability Limit (Gardner,1980): 
n

2 < ref
2 / (*(RlpfC1* ref + ))

• E.g. ref = 2*125MHz, C1=75pF,n=2*2MHz 
 Rmax < 21 kOhm

• Rlpf < 1/5 Rmax for good phase margin
• For details: see Gardner (1980), Fig. 4
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PLL LoopPLL Loop EqnsEqns: Limits on : Limits on RRlpflpf

• Parasitic LPF Pole:  Rlpf*C2 ~ Tref/ 
 if we want V(C1) ~ V(C2) by end of Tref (goal)
(Maneatis ISSCC ’03)

I = (Vc2 –Vc1)/R

 = RC2
C2C1

Vctl

I
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Bode Plot PrimerBode Plot Primer

• Used to analyze frequency domain behavior
• Y-axis: gain in dB. E.g. 20dB=10X gain. 3dB=1.4X
• X-axis: frequency. Log scale
• Assuming “left-hand-plane” location:

– Pole: -20db/dec magnitude loss and -90°
phase shift. Capacitor  pole.

– Zero: +20db/dec magnitude and +90° phase 
shift. Resistor  zero.
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PLL Response vs. DampingPLL Response vs. Damping
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Phase Tracking vs. DampingPhase Tracking vs. Damping

• Peaking at low and high damping factors  bad
• Damping ~ 1  good compromise
• Phase Tracking  think “accumulated” jitter or 

phase error
• VCO frequency peaking (aka period jitter) similar 

to phase peaking
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Transient: Phase Error Transient: Phase Error 
vs.Dampingvs.Damping

• Less ringing and overshoot as   1
• Severe overdamping  ringing and overshoot
• Ringing at high damping due to low oversampling

(large R) – Gardner limit.
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VCO Jitter (VCO Jitter (dfdf/f) vs. Damping/f) vs. Damping

• Low damping  less period jitter, slower 
response, more phase error

• High damping  low oversampling (large R) 
causes oscillation
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PLL Response vs. BandwidthPLL Response vs. Bandwidth
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VCO Freq. Overshoot vs. VCO Freq. Overshoot vs. 
BandwidthBandwidth

• Lower BW  lower overshoot
• Higher OverSamplingRatio (ref/n)  lower 

bandwidth(BW)
• Note:  ~ BW in these simulations
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Phase Error (due to VCO Noise) Phase Error (due to VCO Noise) 
vs. BWvs. BW

• For random VCO noise (I.e. thermal): lower BW 
higher accumulated phase error

• Why? More jittery VCO cycles before PLL starts to 
correct:

Terr ~ Jrms * sqrt(2fvco/n)
where
Jrms = std dev of VCO period jitter
- valid for damping ~ 1
- assume: Jrms ~ 1/fvco higher f, lower Jrms
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PLL CircuitsPLL Circuits

• Phase-Frequency Detector

• Charge-Pump

• Low-Pass Filter

• Voltage-Controlled Oscillator

• Level-Shifter

• Voltage Regulator
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PhasePhase--Frequency Frequency 
Detector(PFD)Detector(PFD)
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PFD Block DiagramPFD Block Diagram

• Edge-triggered - Input duty-cycle doesn’t matter
• Pulse-widths proportional to phase error
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PFD Logic StatesPFD Logic States

• 3 and “1/2” Output states
• States:   

Avoid Dead-Zone11

Speed Up01

Slow Down10

No Change00

Effect:GoSlowerGoFaster
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Example: PFDExample: PFD

Ref

FbClk

GoFaster

GoSlower

Vctl
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Avoiding the DeadAvoiding the Dead--ZoneZone

• “Dead-zone” occurs when the loop doesn’t 
respond to small phase errors - e.g. 10 pS phase 
error at PFD inputs: 

– PFD cannot generate 10 pS wide GoFaster and 
GoSlower pulses

– Charge-pump switches cannot turn on and off 
in 10 pS

– Solution: delay reset to guarantee min. pulse 
width (typically > 150 pS)
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Charge Pump(CP)Charge Pump(CP)
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Charge PumpCharge Pump

• Converts PFD phase error (digital) to charge 
(analog)

• Charge is proportional to PFD pulse widths
Qcp = Iup*tfaster – Idn*tslower

• Qcp is filtered/integrated in low-pass filter 
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ChargeCharge--Pump Wish ListPump Wish List

• Equal UP/DOWN currents over entire control 
voltage range - reduce phase error.

• Minimal coupling to control voltage during 
switching - reduce jitter.

• Insensitive to power-supply noise and process 
variations – loop stability.

• Easy-to-design, PVT-insensitive reference current.
• Programmable currents to maintain loop dynamics 

(vs. M, fref)? 
• Typical: 1A (mismatch)< Icp < 50 A (Vctl)
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Static Phase Error and CP Static Phase Error and CP 
Up/Down MismatchesUp/Down Mismatches

• Static Phase Error: in lock, net UP and DOWN
currents must integrate to zero 

– If UP current is 2X larger, then DOWN current 
source must be on 2X as long to compensate

– Feedback clock must lead reference for DOWN
to be on longer

– Terr = Tdn - Tup = Treset * (Iup/Idn – 1)  
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Static Phase Error and CP Static Phase Error and CP 
Up/Down MismatchesUp/Down Mismatches

• Phase error can be extremely large at low VCO 
frequencies (esp. if self-biased) due to mismatch 
in current mirrors (low Vgs-Vt)

• Increase Vgs or decrease Vt (large W*L)

• Typical static phase error < 100 pS
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VCO Jitter and CP Up/Down VCO Jitter and CP Up/Down 
MismatchesMismatches

• PFD-CP correct at rate of reference (e.g. 10nS).
• Most phase error correction occurs near reference 

rising edge and lasts < 200 pS, causing a control 
voltage ripple.

• This ripple affects the VCO cycles near the 
reference more than VCO cycles later in the ref 
cycle, causing VCO jitter.

• Typ. Jitter << 1% due to Up/Down Mismatches
• Avoid ripple by spreading correction over entire 

ref cycle. (Maneatis JSSC ’03) 
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Simple Charge PumpSimple Charge Pump

• R(switches) varies with Vctl due to body-effect
• Use CMOS pass-gate switches for less Vctl

sensitivity
• Long-channel current sources for matching and 

higher Rout

Up_n

Down

VctlIbias

m1
m2

m3 m4

m5

m6

m7
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Charge Pump: const I with ampCharge Pump: const I with amp

• Amp keeps Vds of current sources constant (Young 
’92)

• Amp sinks “waste” current when UP, DOWN off

U p

D ow nD ow n

V ctl

V bn

V bp

+
-

U p_n

D ow n_n

U p

V irtV c tl

A dd  cap  to  V irtV c tl fo r vo lt. s tab ility

A m p  Ib ias  shou ld  track  Icp
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Charge Pump Charge Pump –– switches reversedswitches reversed

• Switches closer to power rails reduce noise and 
Vctl dependence  Icp not constant with up/down

m1,m4,m5,m8,m9: long L

Up_n

Down

Vctl

Ibias

m1

m3

m6 m7

m8

m9

m10
m2

m4

m5
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Charge Pump: switches reversed Charge Pump: switches reversed 
with fast turnwith fast turn--off off ((InginoIngino ‘01)‘01)

m1,m4,m5,m8,m9: long L

Up_n

Down

Vctl

Ibias

m1

m3

m6
m7

m8

m9

m10m2

m4

m5

m11

m12

Up

Down_n

m11, m12: faster turn-off
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Simple ChargeSimple Charge--Pump BiasPump Bias

• Ib ~ (Vdd – Vt)/R
• Ib dependent on PVT
• Prefer low-Vt, moderate-to-long L for process 

insensitivity, large W/L for low gate-overdrive 
• Pro: Simple, stable. Con: Vdd dependence

Ibias

m2m1
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VDDVDD--independent independent IbiasIbias

• Ib ~ 1/R2

• Con: requires start-up circuit not shown

Ibias

m4m3

m1
m2

M=4

m5
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BandgapBandgap--based based IbiasIbias

• Ib ~ Vref/R
• Con: feedback loop may oscillate 

- cap added to improve stability
• Pro: VDD-independent, mostly Temp independent

Ibias

Vref

Vfb

-
+ m2m1
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LowLow--Pass Filter (LPF)Pass Filter (LPF)
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LowLow--Pass FilterPass Filter
• Integrates charge-pump current onto C1 cap to 

set average VCO frequency (“integral” path).
• Resistor provides instantaneous phase correction 

w/o affecting avg. freq. (“proportional” path).
• C2 cap smoothes large IR ripple on Vctl

• Typical value: 0.5k < Rlpf < 20kOhm

Res

C1 C2

Vctl
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FeedFeed--Forward Zero: eliminate RForward Zero: eliminate R

• Resistor provides an instantaneous IR on the 
control voltage causing the VCO V2I to generate a 
current bump on the oscillator input

• Eliminate R  Add parallel CP path into V2I 
• See Maneatis JSSC ’96 or ’03 for example

CP1
Vintegral

Virtual Vctl

CP2
“Res”

Vproportional

V2I

RO

IVCO
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LowLow--Pass Filter Smoothing Pass Filter Smoothing 
Cap(CCap(C22))

• “Smoothing” capacitor on control voltage filters CP 
ripple, but may make loop unstable 

• Creates parasitic pole: p = 1/(R C2)
• C2 < 1/10*C1 for stability
• C2 > 1/50*C1 for low jitter
• Smoothing cap reduces “IR”-induced VCO  jitter to 

< 0.5% from 5-10%
• fvco = KvcoIcpTerr/C2

• Larger C2/C1 increases phase error slightly 
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LowLow--Pass Filter CapacitorsPass Filter Capacitors

• At <= 130nm, thin-gate oxide leakage is huge: 
– Ileak ~ Vgate 4.5

– NMOS leakier than PMOS
– Weak temperature dependence
– Ileak vs. tox  ~2-3X per Angstrom

• Use metal caps or thick-gate oxide caps to reduce 
leakage 

• Metal caps use 10X more area than thin gate caps
– Use minimum width/spacing parallel lines 
– Hard to LVS - Check extracted layout for 

correct connectivity
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LowLow--Pass Filter CapacitorsPass Filter Capacitors

• Even thick gate oxide may still leak too much

• Large filter cap (C1) typically ranges from 50pF to 
400 pF

• C1 cap BW may be low as ~10X PLL BW for nearly 
ideal behavior

• Min C2 BW set by Tref

• Cap BW ~ 1/RC ~ 1/L2

• Gate cap not constant with Vgs



Copyright, Dennis Fischette, 
2004

63

VoltageVoltage--Controlled Oscillator Controlled Oscillator 
(VCO)(VCO)
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VoltageVoltage--Controlled OscillatorControlled Oscillator

• VCO usually consists of two parts: control voltage-
to-control current (V2I) circuit and current-
controlled ring oscillator (ICO)

• VCO may be single-ended or differential
• Differential design allows for even number of 

oscillator stages if differential-pair amps used for 
delay cells

• V2V may be used instead to generate bias 
voltages for diff-pair amps 
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PLL Suppression of VCO NoisePLL Suppression of VCO Noise

• PLL acts like a high-pass filter in allowing VCO 
noise to reach PLL output

• Need noise-immune VCO to minimize jitter 
– Feedback loop cannot react quickly.

• Power-supply noise is largest source of VCO noise
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VCO Design ConcernsVCO Design Concerns

• Min low-frequency power-supply sensitivity 
< 0.05% per %dVDD  reduce phase error

• Min high-frequency power-supply sensitivity
< 0.1% per %dVDD  reduce period jitter
Note: this is 10X better than normal INV

• Low substrate-noise sensitivity  reduce Vt

– unnecessary in SOI
• Thermal noise (kT) 

– typically < 1% VCO period at high frequency
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VCO Design ConcernsVCO Design Concerns

• Large frequency range to cover PVT variation:

3-5X typical
• Single-ended or differential? 

– use differential for 50% duty-cycle

• Vco gain (fvco = Kvco* Vctl) affects loop stability

• Typical VCO gain: Kvco ~ 1-3X * fmax

• More delay stages  easier to initiate oscillation
– Gain(DC) > 2 for 3 stages 
– Gain(DC) > sqrt(2) for 4 stages
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VCO w/“pseudoVCO w/“pseudo--differential” differential” 
currentcurrent--starved invertersstarved inverters

• Need odd # of stages
• Feedback INV  usually weaker by ~4X
• “Vdd” for inverters is regulated output of V2I

weakweakweak
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VCO VVCO V--toto--I CircuitsI Circuits

• Converts Vctl to Ictl

• May generate additional Vbias for oscillator
• May use internal feedback to set VCO swing
• Provides power-supply rejection  fets in deep 

saturation or amp-based internal feedback
• Filters high-frequency Vctl ripple w/another cap
• Adds parasitic pole  BW(V2I) >> BW(PLL)
• Digital Range settings allow for control of VCO 

gain and Vctl range   must overlap ranges
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Simple V2ISimple V2I

• Minimal filtering of Vctl ripple
• Keep long-channel current source in saturation
• Cap adds parasitic pole  p = 1/(Rvco*C)
• Typical Cap Size: 0.5 pF < C < 5 pF
• Reference Vctl to same potential as LPF caps

Vctl
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V2I w/Feedback V2I w/Feedback (V. von(V. von KaenelKaenel (JSCC ’96)(JSCC ’96)

• Feedback  amp provides good low-freq power-
supply rejection

• Cap to Vdd provides good high-freq rejection
• Start-up needed 
• Stability concern?

Vctl

_

+ m1

Ivco

m2

Vfb
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Differential Differential VCO’sVCO’s
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VCO: simple differential delayVCO: simple differential delay

• DC gain ~ gm1*R
• Hard to get enough gain w/o large resistor
• Tail current controls delay – V2I needed?

Vbn

m1 m2
ip in

zn zp

m3
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VCO: differential delay VCO: differential delay 
w/symmetric load w/symmetric load ((ManeatisManeatis ’96)’96)

• Loads acts like resistor over entire voltage swing
• Widely used but requires two bias voltages

zn zp

Vbn

m1 m2
ip in

m5

m3 m4m6 m7

Vbp
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V2I: replica bias V2I: replica bias -- symmetric loadsymmetric load

• Vswing = Vctl (Maneatis ’96)
• Amp provides DC power-supply rejection
• Stable, but getting high BW and good PSRR tricky

+
-

Vfb

Vbn

m1 m2

m5

m3 m4m6 m7

Vctl

Vctl
Dummy delay cell
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VCO LevelVCO Level--ShifterShifter

• Amplify limited-swing VCO signals to full-rail
– typically from 0.4-0.7V to VDD

• Maintain 50% duty-cycle 
– usually  +/- 3% 
– difficult to do over PVT and frequency

• Insensitive to power-supply noise 
< 0.5 % per % dVDD

• Which power-supply? Analog or digital? 
– usually digital 
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VCO: LevelVCO: Level--ShifterShifter

• Need sufficient gain at low VCO frequency
• Use NMOS input pair if VCO swing referenced to 

VSS for better power-supply rejection
• Net “zn” should swing almost full-rail to switch 

output inverter

in

z

m1 m2
ip

m3 m4

zn
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Feedback DividerFeedback Divider
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Feedback Divider (FBDIV)Feedback Divider (FBDIV)

• Divide VCO by N  fref = fvco/N
• Divider may be internal to PLL or after CPU clock 

tree
• Max FBDIV frequency should be greater than max 

VCO frequency to avoid “run-away”
• Minimize FBDIV latency to reduce VDD-induced 

jitter seen at phase detector 
• Loop Phase Margin Degradation ~ nTdly

– usually insignificant
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Feedback DividerFeedback Divider

• Two common types of dividers:
– Asynchronous cascade of div-by-2’s
– Synchronous counter – typically used
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Asynchronous DivideAsynchronous Divide--byby--22

• Pro: fast, simple
• Pro: small area
• Con: long latency for large divisors
• Con: divide by powers of 2 only
• Can be used as front-end to synchronous counter 

divider to reduce speed requirements
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Feedback Divider: cascade of divFeedback Divider: cascade of div--
byby--2’s2’s
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CounterCounter--Based DividerBased Divider

• Pro: divide by any integer N
• Pro: constant latency vs. N
• Pro: low latency
• Pro: small area  Binary-encoded.
• Con: slow if using ripple counter  don’t
• Con: output may glitch  delay (re-sample) 

output by one cycle to clean up glitch
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VDDA Voltage RegulatorVDDA Voltage Regulator
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Voltage Regulator/FilterVoltage Regulator/Filter

• Used to filter power-supply noise
– typically > 20 dB (10x) PSRR over entire 

frequency range
– desire 30+ dB

• Secondary purpose is to set precise voltage level 
for PLL power supply

– usually set by bandgap reference



Copyright, Dennis Fischette, 
2004

86

Voltage RegulatorVoltage Regulator

• Bandgap reference generates a voltage reference 
(~1.2V) that is independent of PVT 

– relies on parasitic diodes (vertical PNP)
• Regulator output stage may be source-follower 

(NFET) or common-source amp (PFET)
– source-follower requires more headroom (and 

area?) but is more stable
– common-source amp may be unstable without 

Miller capacitor or other compensation
• Beware of large, fast current spikes in PLL load 

(i.e. when changing PLL frequency range)
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Bandgap Bandgap Reference w/Miller CapReference w/Miller Cap

• Stability and PSRR may be poor w/o Miller cap 
• Miller cap splits poles. Can also add R in series 

w/Cc for more stability (Razavi ’00)

Vbg

-
+
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10k 5k

1k

m=8 m=1
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Voltage Regulator for VDDAVoltage Regulator for VDDA
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Advanced Concepts: Advanced Concepts: 
SelfSelf--Biased PLLBiased PLL

• Conventional PLL: loop dynamics depends on Icp, 
Rlpf, Clpf, Kvco and FBDiv. These do not necessarily 
track.

• Why not generate all bias currents from the I(vco) 
and use a feed-forward zero to eliminate the 
resistor. Everything tracks. (Maneatis JSCC ‘03)

• Con: start-up, stability
• Pro: reduces PVT sensitivity
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Example Circuit ParametersExample Circuit Parameters

• VDD=1.2V, f(max)-f(min) = 3 GHz
• Kvco = 5GHz/V  usable Vctl range (0.6V)
• Icp = 20 uA
• Rlpf=2500 Ohm
• C1=75 pF  Area(metal) ~ 275um x 275um
• C2=5 pF
• 0.85 <  < 1.2
• 1.5 MHz < n/2 < 2.1 MHz 
• Tacq ~ 5 uS Taqc =~ 2CdV/I



Copyright, Dennis Fischette, 
2004

91

RealReal--world PLL Failuresworld PLL Failures
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PLL ProblemPLL Problem

• Problem: 3-stage PMOS diff-pair VCO wouldn’t 
oscillate at low frequencies. When VCO finally 
started up at high Vctl, it outran FBDIV. 

• Cause: leaky, mis-manufactured loads in delay 
cell reduced gain of delay element < 2

• Solutions: 
– increase L of load devices for higher gain
– add more VCO stages to reduce gain 

requirements
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PLL ProblemPLL Problem

• Problem: VCO stuck at max frequency at power-
on.

• Cause: PLL tried to lock before VDD was stable. 
Because VCO couldn’t run fast enough to lock at 
low VDD, Vctl saturated. When VDD finally 
stabilized, Vctl = VDD, causing a maxed-out VCO 
to outrun FBDIV.

• Solution: maintain PLL RESET high until VDD is 
stable to keep Vctl at 0V.
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PLL ProblemPLL Problem

• Problem: VCO stuck at max frequency after 
changing power-modes.

• Cause: Feedback DIV could not run fast enough to 
handle VCO overshoot when locking to a new 
frequency or facing a reference phase step.

• Solutions: 
– limit size of frequency steps
– increase speed of Feedback DIV
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PLL ProblemPLL Problem

• Problem: PLL would not lock.
• Cause: Feedback DIV generated glitches causing 

PFD to get confused.
• Solution: add re-sampling flop to output of 

feedback DIV to remove glitches.
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PLL ProblemPLL Problem

• Problem: PLL output clock occasionally skipped 
edges at low VCO frequencies

• Cause: VCO level-shifter had insufficient gain 
when VCO swing was close to Vt.

• Solutions: 
– increase W of diff-pair inputs
– use low-Vt devices
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PLL ProblemPLL Problem

• Problem: VCO jitter was huge at some divider 
settings and fine at others.

• Cause: Integration team connected programmable 
current sources backward.

• Solution: write accurate verilog model that 
complains when inputs are out-of-range.
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PLL ProblemPLL Problem

• Problem: PLL jitter was poor at low freq and good 
at high freq.

• Cause: Vctl was too close to Vt at low frequency.
• Solution: Run VCO at 2X and divide it down to 

generate slow clocks.
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PLL ProblemPLL Problem

• Problem: RAMDAC PLL had large accumulated 
phase error which showed up as jitter on CRT 
screen.  

• Cause: PLL bandwidth was too low, allowing 
random VCO jitter to accumulate.

• Solution: increase bandwidth so that loop corrects 
before VCO jitter accumulates.
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PLL ProblemPLL Problem

• Problem: PLL had poor peak-peak jitter, but good 
RMS jitter.

• Cause: digital VDD pin in package adjacent to 
PLL’s analog VDD coupled digital VDD noise to 
analog VDD during certain test patterns.

• Solution: Remove wirebond for adjacent digital 
VDD pin.
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PLL ProblemPLL Problem

• Problem: large static offset.
• Cause: designer did not account for gate leakage 

in LPF caps.
• Solutions: 

– switch to thick-gate oxide caps
– switch to metal caps
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PLL ProblemPLL Problem

• Problem: VCO period jitter = +/- 20%, modulated 
at a fixed frequency.

• Cause: Unstable V2I internal feedback loop 
caused by incorrect processing of stabilizing caps.

• Solutions: 
– correct manufacturing of capacitors
– add more caps
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PLL ProblemPLL Problem

• Problem: bandgap reference was stable in one 
process but oscillated in a different process with 
similar feature sizes.

• Cause: compensation caps for 2-pole feedback 
system with self-bias were too small.

• Solution: make compensation caps 3X larger. 
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Uncle D’s PLL Top 5 ListUncle D’s PLL Top 5 List

• 5. Maintain damping factor ~ 1
• 4. VDD-induced VCO noise – loop can’t do the 

work for you
• 3. Leaky gate caps will cost you your job
• 2. Make FBDIV run faster than VCO
• 1. Observe VCO,FBCLK,REF,clkTree on differential 

I/O pins – you can’t fix what you can’t see!
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AppendicesAppendices
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AppendicesAppendices

• Appendix A: Design for Test
• Appendix B: Writing a PLL spec
• Appendix C: Additional PLL material
• Appendix D: Paper References
• Appendix E: Monograph References
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Design for TestDesign for Test
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Design for Test OverviewDesign for Test Overview

• Measuring Jitter
• Analog Observation
• Probing
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Measuring Jitter: PowerMeasuring Jitter: Power--Supply Supply 
Noise SensitivityNoise Sensitivity

• Induce noise on-chip with VDD-VSS short 
– need off-chip frequency source or on-chip FSM 

to control noise generator
– How to measure induced noise magnitude?

• Induce noise on board
– capacitively couple to VDDA
– hard to get it past filtering and attenuation
– how much makes it to PLL? 
– VDDA inductance? – wire-bond, flip-chip
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Routing: From PLL to BoardRouting: From PLL to Board

• Differential IO outputs highly desirable
• Types of IO – use highest-speed available
• Divide VCO to reduce board attenuation only if 

necessary  make divider programmable
• Measuring duty-cycle

- Divide-by-odd-integer
- Mux to select either true or inverted clock

• Minimize delay on-chip from PLL to IO
• Ability to disable neighboring IO when measuring 

jitter
• Avoid coupling in package and board
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General Test HardwareGeneral Test Hardware

• High-bandwidth scope: 
– 4-6 GHz real-time
– $50-60k
– e.g. Agilent, Tektronix, LeCroy

• Differential high-speed probes: 
– 3-6 GHz BW
– $3-6k

• Active pico-probes and passive (DC) probes for 
micro-probing PLL

• Avoid large GND loops on probes
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Jitter Hardware/SoftwareJitter Hardware/Software

• Jitter Analysis tools:
– e.g. Wavecrest, Tek(Jit2), Amherst Design

• Jitter measurement types:
– Period jitter histogram
– Long-term jitter
– Cycle-to-adjacent cycle jitter
– Half-period jitter
– Jitter FFT - limited by Nyquist – aliasing

• Scope memory depth
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Miscellaneous Jitter MeasurementsMiscellaneous Jitter Measurements

• Open-loop vs. Closed-loop Jitter
– disable loop-filter  does PLL jitter change?

• Mux Ref into PLL observation path for jitter 
calibration

– Is Ref jitter worse after coming from PLL 
compared to before it enters the chip?

• Observe “end-of-clock tree” for jitter and duty-
cycle distortion

• Observe Fbclk for jitter and missing edges
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Measuring PLL Loop Dynamics  Measuring PLL Loop Dynamics  

• Modulate reference frequency, measuring long-
term PLL jitter.  Sweep modulation frequency to 
determine bandwidth and damping. 

– e.g. Wavecrest
• Spectrum analyzer

– look for noise suppression in frequency range 
close to signal peak

– difficult if noisy setup
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Measuring Phase ErrorMeasuring Phase Error

• Hard to do!
• Fbclk available for observation?
• Need to acct. for Fbclk delay from PLL to IO –

depends on PVT.
• Solutions: 

– route Fbclk off-chip to pkg and match input 
delay with Ref. Fbclk/Ref skew at pins ~ Terr 
at PFD. 

– measure Terr on-chip – send out narrow 
pulses – narrow pulses disappear.

– measure Terr on-chip with A/D. Complex.
– mux Fbclk and ref into same path. Compare 

both to external reference.
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Analog ObservationAnalog Observation

• Analog observation IO pins for debug and 
characterization 

– may force internal analog nets as well if bi-
directional pin

– low-bandwidth requirements  low MHz or kHz
– isolate analog nets with unity-gain buffer or 

resistor and pass-gates w/solid pull-down
– drive analog pins to known value when not in 

use
– tri-state analog pin for ESD leakage testing
– ESD protection (CDM and HBM) may cause IO 

leakage



Copyright, Dennis Fischette, 
2004

117

Probing OnProbing On--chipchip

• If not flip-chip, then put probe pads on top-layer 
metal.

• Probe pad size >1um x 1um. Prefer > 2um x 
2um.

• Place probe pad on a side-branch of the analog 
signal to avoid breaking wire with probe.

• Separate probe pads to allow room for multiple 
probes.

• FIB: can add probe pad, add or remove wires.
– need room and luck

• FIB: can FIB SOI flip-chip from back of wafer if 
enough room around lower-level wires.
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Writing a PLL SpecWriting a PLL Spec
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Spec OverviewSpec Overview

• Area, physical integration
• Technology issues
• Power-supply voltage
• Performance metrics
• Logic interface
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Physical IntegrationPhysical Integration

• Area, aspect ratio?
• What metal layers are available?
• Digital signal routing allowed over PLL?
• Where is PLL located on chip?
• Wire-bond or flip-chip?
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Semiconductor ProcessSemiconductor Process

• 90nm, 130nm, 180nm?
• Bulk vs. SOI? SOI body-ties?
• Nwell vs. twin-well?
• Epi substrate?
• Accumulation-mode capacitors?
• Gate-oxide thickness? Capacitance density and 

leakage.
• Dual-gate oxide available? Leakage.
• Poly density requirements?
• Low-Vt available?
• Resistor types? Poly? Diffusion?
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PowerPower--SupplySupply

• Separate analog VDDA? What voltage? 1.8V? 
2.5V? Higher than core voltage?

• Separate analog VSSA?
• Wire-bond or flip-chip? Package Type?
• What type of  VDDA filtering on board? Ferrite 

bead? What cap sizes?
• Min, max VDDA? DC variation? AC variation? 

Natural frequency (1/LC) of VDDA?



Copyright, Dennis Fischette, 
2004

123

PerformancePerformance

• Reference clock frequency? Range?
• Min/Max VCO Frequency?
• Duty cycle?
• Period Jitter? 
• Fixed jitter spec or pct of period?
• Cycle-to-adjacent cycle jitter spec?
• Half-cycle jitter spec?
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PerformancePerformance

• Max Frequency overshoot while settling?
• Static phase error?
• Dynamic phase error?
• Loop bandwidth?
• Time to acquire initial lock?
• Time to re-acquire lock after frequency change? 
• Power Dissipation?
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Logic InterfaceLogic Interface

• Reset available?
• PowerOK available?
• VCO/CP/R range settings allowed?
• Clock glitching allowed when switching VCO 

frequency ranges?
• Level-shift and buffer PLL inputs/outputs?
• Different power domains?
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Example Design SpecsExample Design Specs

• f(ref) = 125 MHz
• 8 < FBDiv < 16  1 GHz < f(vco) < 2 GHz
•  > 0.7 – not constant w/FBDiv
• 1 MHz < n/2 < f(ref) /20
• Pk-Pk Jitter < +/- 2.5% w/dVdd = 50mV
• Tlock < 10 uS
• FreqOvershoot < 15% w/1-ref-cycle phase step
• Static Phase Error < +/- 200 pS  Icp mismatch 

< 50%?
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